116 research outputs found

    First record of Lingulodinium polyedrum (Dinophyceae) resting cysts in coastal sediments from the Inner Sea of Chiloé, Los Lagos Region, southern Chile (~41°-43°S).

    Get PDF
    Quistes de resistencia del dinoflagelado potencialmente toxico Lingulodinium polyedrum (Stein) Dodge son registrados por primera vez en sedimentos costeros del Mar Interior de Chiloe. Se entrega informacion de abundancia, distribucion, descripcion y fotomicrografias de la especie. Se confirma la presencia de L. polyedrum en aguas costeras del sur de Chile

    GERMINATION OF RESTING STAGES OF DIATOMS AND DINOFLAGELLATES IN MARINE SEDIMENTS FROM TWO UPWELLING AREAS OF CHILE

    Get PDF
    Con el fin de evaluar la potencial germinación de los estados de resistencia de las diatomeas y dinofiagelados preservados en sedimentos superficiales, se cultivaron bajo condiciones de laboratorio sedimentos de las bahías de Mejillones (23° S) y Concepción (36° S), Chile: Ciclo L:0 12:12 h, intensidad de luz 140 umol m²s_1, temperatura ambiente y 35,4 unidades de salinidad. Las principales especies de diatomeas presentes en los sedimentos fueron Skeletonema japonicum y esporas de Chaetoceros. Los quistes de dinofiagelados estuvieron representados por Diplopsalis, Scrippsiella, Woloszynskia y las especies Protoperidinium avellanum y P. leonis. Después de 20 días de cultivo, se registró germinación y crecimiento de S. japonicum y de varias especies de Chaetoceros, sin embargo su abundancia fue baja. Las diatomeas con crecimiento abundante fueron Stauroneis legleri, Pseudostaurosira trainorii, Pseudostaurosira sp.l, Pseudostaurosira sp. 2 y Navícula pseudoreinhardtii. El dinoflagelado Woloszynskia sp. también germinó y creció abundantemente. Este trabajo incluye una breve descripción de las especies cultivadas y algunos aspectos de su ecología. Se discuten las posibles causas de la pobre germinación de las diatomeas planctónicas, siendo la baja concentración de oxígeno disuelto en las aguas de fondo uno de los principales factores que presumiblemente afectaron la sobrevivencia de las esporas de resistencia. With the aim to assess germination of diatom and dinofiagellates resting spores we cultured under laboratory conditions surface sediments collected in the Mejillones Bay (23° S) and off Concepción (36° S), Chile. These sediments were cultured in the laboratory with a 12:12 h L/D cycle, light intensity of 140 umol m² s"¹, at room temperature, and with a salinity of 35.4 units. The main diatom species in the sediments were Skeletonema japonicum and Chaetoceros spores. Dinofiagellate cysts were represented by the genera Diplopsalis, Scrippsiella, and Woloszynskia and the species Protoperidinium avellanum and P. leonis. After 20 days of culturing, germination and growth was recorded for S. japonicum and several of the Chaetoceros species, although their abundance was low. The diatoms with abundant growth were Stauroneis legleri, Pseudostaurosira trainorii, Pseudostaurosira sp.l, Pseudostaurosira sp. 2, and Navícula pseudoreinhardtii. The dinofiagellate Woloszynskia sp. also germinated and grew abundantly in the culture. This study includes a brief description of the cultured species and some aspects of their ecology. In addition, we discuss the possible causes for low levels of germination in planktonic diatoms, finding low dissolved oxygen concentrations in the bottom waters to be one of the main factors that presumably affected the survival of resting spores in the sediment

    Plankton food-webs: to what extent can they be simplified?

    Get PDF
    Plankton is a hugely diverse community including both unicellular and multicellular organisms, whose individual dimensions span over seven orders of magnitude. Plankton is a fundamental part of biogeochemical cycles and food-webs in aquatic systems. While knowledge has progressively accumulated at the level of single species and single trophic processes, the overwhelming biological diversity of plankton interactions is insufficiently known and a coherent and unifying trophic framework is virtually lacking. We performed an extensive review of the plankton literature to provide a compilation of data suitable for implementing food-web models including plankton trophic processes at high taxonomic resolution. We identified the components of the plankton community at the Long Term Ecological Research Station MareChiara in the Gulf of Naples. These components represented the sixty-three nodes of a plankton food-web. To each node we attributed biomass and vital rates, i.e. production, consumption, assimilation rates and ratio between autotrophy and heterotrophy in mixotrophic protists. Biomasses and rates values were defined for two opposite system's conditions; relatively eutrophic and oligotrophic states. We finally identified 817 possible trophic links within the web and provided each of them with a relative weight, in order to define a diet-matrix, valid for both trophic states, which included all consumers, fromn anoflagellates to carnivorous plankton. Vital rates for plankton resulted, as expected, very wide; this strongly contrasts with the narrow ranges considered in plankton system models implemented so far. Moreover, the amount and variety of trophic links highlighted by our review is largely excluded by state-of-the-art biogeochemical and food-web models for aquatic systems. Plankton models could potentially benefit from the integration of the trophic diversity outlined in this paper: first, by using more realistic rates; second, by better defining trophic roles of consumers in the planktonic web. We suggest that most trophic habits present in planktonic organisms must be contemplated in new generation plankton models.</p

    MIDTAL (Microarrays for the Detection of Toxic Algae)

    Get PDF
    Microalgae in marine and brackish waters of Europe regularly cause harmful effects, considered from the human perspective, in that they cause economic damage to fisheries and tourism. Cyanobacteria cause similar problems in freshwaters. These episodes encompass a broad range of phenomena collectively referred to as harmful algal blooms (HABs). For adequate management of these phenomena, monitoring of microalgae is required. However, present day monitoring is time consuming and based on morphology as determined by light microscopy, which may be insufficient to give definitive species and toxin attribution. In the European Union (EU) FP7 project MIDTAL (microarrays for the detection of toxic algae), we will first target rapid species identification using rRNA genes. The variable regions of the rRNA genes can be used for probe design to recognize species or even strains. Second, a toxin based microarray will be developed that includes antibody reactions to specific toxins produced by these microalgae because even when cell numbers are low, toxins can be present and can accumulate in the shellfish. Microarrays are the state of the art technology in molecular biology for the processing of bulk samples for detection of target RNA/DNA sequence. Existing rRNA probes and antibodies for toxic algal species/strains and their toxins will be adapted and optimized for microarray use. The purpose of MIDTAL is to support the common fisheries policy and to aid the national monitoring agencies by providing new rapid tools for the identification of toxic algae and their toxins so they can comply with EU directive 91/1491/CEE to monitor for toxic algae, and reduce the need for the mouse bioassay

    Identification of the meiotic toolkit in diatoms and exploration of meiosis-specific SPO11 and RAD51 homologs in the sexual species Pseudo-nitzschia multistriata and Seminavis robusta (vol 16, 930, 2015)

    Get PDF
    Following the publication of this article [1], the authors reported that the link to Additionalfile11 linked to the wrong set of data. The correct supplementary data is provided in this Correction article (Additionalfile11)

    Time series and beyond: multifaceted plankton research at a marine Mediterranean LTER site

    Get PDF
    Plankton are a pivotal component of the diversity and functioning of coastal marine ecosystems. A long time-series of observations is the best tool to trace their patterns and variability over multiple scales, ultimately providing a sound foundation for assessing, modelling and predicting the effects of anthropogenic and natural environmental changes on pelagic communities. At the same time, a long time-series constitutes a formidable asset for different kinds of research on specific questions that emerge from the observations, whereby the results of these complementary studies provide precious interpretative tools that augment the informative value of the data collected. In this paper, we review more than 140 studies that have been developed around a Mediterranean plankton time series gathered in the Gulf of Naples at the station LTER-MC since 1984. These studies have addressed different topics concerning marine plankton, which have included: i) seasonal patterns and trends; ii) taxonomic diversity, with a focus on key or harmful algal species and the discovery of many new taxa; iii) molecular diversity of selected species, groups of species or the whole planktonic community; iv) life cycles of several phyto- and zooplankton species; and v) interactions among species through trophic relationships, parasites and viruses. Overall, the products of this research demonstrate the great value of time series besides the record of fluctuations and trends, and highlight their primary role in the development of the scientific knowledge of plankton much beyond the local scale

    Mendelian Inheritance Pattern and High Mutation Rates of Microsatellite Alleles in the Diatom Pseudo-nitzchia multistriata

    Get PDF
    The diatom Pseudo-nitzschia multistriata exhibits a diplontic life cycle composed of an extensive phase of vegetative cell division and a brief phase of sexual reproduction. To explore genotypic stability, we genotyped seven polymorphic microsatellite loci in 26 monoclonal strains over 3–16 months in a culture maintenance regime. Moreover, to assess inheritance patterns of the microsatellite alleles, we genotyped 246 F1 strains resulting from four mating experiments between parental strains of know genotype. Results generally conformed expectations according to Mendelian inheritance patterns, but deviations were detected indicating mutations during sexual reproduction. A total of forty-two mutations were detected in the clonal cultures over time. Microsatellites with more core-repeats accumulated mutations faster. The mutation rate varied significantly across loci and strains. A binomial mass function and a computer simulation showed that the mutation rate was significantly higher during the first months of culture (μ≈3×10-3 per locus per cell division) and decreased to μ≈1×10-3 in the strains kept for 16 months. Our results suggest that genetic mutations acquired in both the vegetative phase and sexual reproduction add to the allelic diversity of microsatellites, and hence to the genotypic variation present in a natural population

    Annotated 18S and 28S rDNA reference sequences of taxa in the planktonic diatom family Chaetocerotaceae

    Get PDF
    The species-rich diatom family Chaetocerotaceae is common in the coastal marine phytoplankton worldwide where it is responsible for a substantial part of the primary production. Despite its relevance for the global cycling of carbon and silica, many species are still described only morphologically, and numerous specimens do not fit any described taxa. Nowadays, studies to assess plankton biodiversity deploy high throughput sequencing metabarcoding of the 18S rDNA V4 region, but to translate the gathered metabarcodes into biologically meaningful taxa, there is a need for reference barcodes. However, 18S reference barcodes for this important family are still relatively scarce. We provide 18S rDNA and partial 28S rDNA reference sequences of 443 morphologically characterized chaetocerotacean strains. We gathered 164 of the 216 18S sequences and 244 of the 413 28S sequences of strains from the Gulf of Naples, Atlantic France, and Chile. Inferred phylogenies showed 84 terminal taxa in seven principal clades. Two of these clades included terminal taxa whose rDNA sequences contained spliceosomal and Group IC1 introns. Regarding the commonly used metabarcode markers in planktonic diversity studies, all terminal taxa can be discriminated with the 18S V4 hypervariable region; its primers fit their targets in all but two species, and the V4-tree topology is similar to that of the 18S. Hence V4-metabarcodes of unknown Chaetocerotaceae are assignable to the family. Regarding the V9 hypervariable region, most terminal taxa can be discriminated, but several contain introns in their primer targets. Moreover, poor phylogenetic resolution of the V9 region affects placement of metabarcodes of putative but unknown chaetocerotacean taxa, and hence, uncertainty in taxonomic assignment, even of higher taxa.info:eu-repo/semantics/publishedVersio
    • …
    corecore